Arithmetic functions at consecutive shifted primes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Additive Functions on Shifted Primes

Best possible bounds are obtained for the concentration function of an additive arithmetic function on sequences of shifted primes. A real-valued function / defined on the positive integers is additive if it satisfies f(rs) = f(r) + f(s) whenever r and s are coprime. Such functions are determined by their values on the prime-powers. For additive arithmetic function /, let Q denote the frequency...

متن کامل

Ten consecutive primes in arithmetic progression

In 1967 the first set of 6 consecutive primes in arithmetic progression was found. In 1995 the first set of 7 consecutive primes in arithmetic progression was found. Between November, 1997 and March, 1998, we succeeded in finding sets of 8, 9 and 10 consecutive primes in arithmetic progression. This was made possible because of the increase in computer capability and availability, and the abili...

متن کامل

Seven consecutive primes in arithmetic progression

It is conjectured that there exist arbitrarily long sequences of consecutive primes in arithmetic progression. In 1967, the first such sequence of 6 consecutive primes in arithmetic progression was found. Searching for 7 consecutive primes in arithmetic progression is difficult because it is necessary that a prescribed set of at least 1254 numbers between the first and last prime all be composi...

متن کامل

Divisors of Shifted Primes

Abstract. We bound from below the number of shifted primes p+s ≤ x that have a divisor in a given interval (y, z]. Kevin Ford has obtained upper bounds of the expected order of magnitude on this quantity as well as lower bounds in a special case of the parameters y and z. We supply here the corresponding lower bounds in a broad range of the parameters y and z. As expected, these bounds depend h...

متن کامل

Primes in arithmetic progressions

[1] Euler’s proof uses only simple properties of ζ(s), and only of ζ(s) as a function of a real, rather than complex, variable. Given the status of complex number and complex analysis in Euler’s time, this is not surprising. It is slightly more surprising that Dirichlet’s original argument also was a real-variable argument, since by that time, a hundred years later, complex analysis was well-es...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Number Theory

سال: 2015

ISSN: 1793-0421,1793-7310

DOI: 10.1142/s1793042115400023